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3: Theory of Pressure Gradient Microphones

In an isotropic medium such as air, the sound pressure at a point due to the propagation of a
sound wave is independent of the direction in which the wave travels through that point [11]
[89]; hence, a transducer which responds to the sound pressure at a point is omnidirectional,
responding equally to waves incident from any direction. Real pressure microphones only
approximate this ideal, since they are not truly “point” devices. Such a microphone responds
to the pressure over its diaphragm, and an omnidirectional characteristic is obtained only
because sound waves diffract around the capsule so that the pressure on any face of the
capsule does not depend on the direction of incidence. At frequencies where the dimensions
of the capsule are comparable to the wavelength, acoustic shadowing occurs and such
microphones tend to become directional, responding more to frontally incident waves and
less to sound arriving from other directions. Nevertheless, it is possible to construct small
pressure microphones that are substantially omnidirectional over the full audio bandwidth;
that is, from 20 Hz to 20 kHz.

The earliest microphones were nominally omnidirectional, pressure-responding devices. For
many recording applications, it is desirable that microphones should not be omnidirectional,
but should have other directional characteristics. The first directional microphones appear to
have been the ribbon microphones developed at RCA [69]; the first of these was made
available as a commercia product in 1931 [73]. Such microphones are useful because they
allow the sound from a specific source to be more readily distinguished from ambient or
“background” sound, which often constitutes unwanted interference [72] [74] [76] [81]. They
are also required to facilitate the coincident microphone techniques often used when making
stereo and surround sound recordings [13] [17] [42] [53] [75].

Directional microphones may be classified as being of either the “interference” / “wave’ or
the “pressure gradient” type [70] [74] [76] [78]. Pressure gradient devices are by far the most
commonly used, and will be discussed here in detail. They respond to the differences in
sound pressure between two or more points separated by distances which are small compared
to the wavelength.

By contrast, interference microphones must have dimensions at least comparable to, and

usually larger than, the wavelength. This class includes such devices as parabolic reflectors,
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acoustic lenses, large-surface microphones, and “line” (also known as “shotgun” and
“interference tube’) microphones; of these, only the line microphone is in common use [76].
Because of the long wavelengths associated with the lower reaches of the audio frequency
range (approximately 1.7 m at 200 Hz), it is not usually practical to employ such
microphones when pickup over the full audio bandwidth is required [72] [74] [76].
Furthermore, the polar patterns exhibit sidelobes which vary with frequency, so that off-axis
comb filtering effects occur; these are usually sufficient to render microphones of this type

unsuitable for high quality recording [37] [72].

3.1: First-Order Pressure Gradient Microphones

The theory of first-order pressure gradient microphones will now be developed. Proofs that
specific types of microphones (e.g., the ribbon microphone) respond to the pressure gradient
are abundant in the literature [11] [62] [69] [71], and such standard materia will not be
duplicated here. Rather, the following discussion is concerned with results which follow from
the concept of measuring the pressure gradient, regardless of the transduction mechanism
employed.

By “pressure gradient” is meant the rate of change of sound pressure with respect to a
(small) movement in space; that is, the derivative of sound pressure with respect to
displacement. That displacement may be in an arbitrary direction, which will depend on the
orientation of the microphone. In the opinion of the author, the directional derivative is
therefore the obvious mathematical tool to utilise for the analysis of such microphones.
However, this method has not generally been adopted in the literature (although one
occasionally finds that substantially this approach has been employed, but without explicit
use of the notation of vector calculus; e.g., [25]). Although the results presented in this
section are not themselves new, it may be claimed that the derivations are more satisfactory
and more general than those available in the existing literature. In addition, the treatment here
of first-order microphones will provide the basis for a similar treatment of second-order
pressure gradient microphones which, except for certain special cases, have received little
attention to date.

Let p be the sound pressure at a point x in space defined in terms of some “world”
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coordinate system. Consider a plane wave propagating in a direction specified by spherical

polar coordinate angles (q ,f ), as shown in figure 3.1.
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Figure 3.1: Direction of Wave Propagation in “World” Coordinate System

Let k be the wave vector
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Now let U, be a unit vector pointing in a direction defined by spherical polar coordinate

angles (q'.f *);

écos(") cos(f ‘)u
0, = &sin@") cos(f ') (3.5)
e snf’) ¢

The directional derivative of p in the direction U, isthen

écos(q ) cos(f )U écos(q") cos(f ")u
G, *Np = - jkgsin(@) cos(f) 4 Esin(a’) costf ) ip
& snf) Y@ snf) 4§
= - jk[cos(@) cos(f ) cos(q") cos(f *) +sin(q ) cos(f )sin(g") cos(f *)
+sin(f )sinf )] p
= - jK[cos(f ) cos(f *)cos(q - g') +sin(f)sin(f )] p

(3.6)

The factor [cos(f )cos(f ")cos(q - q') +sin(f )sin(f ')] is the scalar product of the two unit
vectors U, and (1/k)k, and is therefore equal to the cosine of the angle between them. Thus,

it is equa to the cosine of the angle between the direction in which U, points and the
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direction of propagation of the wave.

This result has been expressed in terms of a “world” coordinate system, in which a
microphone may be placed at an arbitrary position, but it is conventional and often more
useful to work in terms of a coordinate system centred on the microphone. It is convenient in
this case to describe the plane wave in terms of the direction from which it is incident, rather
than the direction in which it propagates. Let the wave be incident from a direction (q,f ), as

shown in figure 3.2.

z
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Figure 3.2: Direction of Incidence in Microphone Coordinate System

We define the “wave incidence vector”

gcos(d ) cos(f )u
k = kgsin(q) cos(f ) (37)

g snf) §
and the sound pressure at the point x ,, isthen given by

p = AeltvHoxm (3.8)
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(note the change of sign in the exponent), so that

goos(cr) cos(f )u
Nip = jkgsin() cos(f ) gp (39)
g snf) @

Let U, point in the direction given in the microphone coordinate system by angles (q',  *).

Then the directional derivative
u, Np = jk[cos(f )cos(f ')cos(q - q') +sin(f )sin(f )] p (3.10)

It is convenient to orient the microphone coordinate system such that U, is coincident with
the x axis, i.e., so that U, =X. (This is consistent with the convention that the x axis points
forwards, since U, defines the direction in which the microphone points.)) In this case,

q'=f'=0 and
u, Np = jkcos(q)cos(f ) p (3.11)

The amplitude of this pressure gradient depends on the direction from which the wave is
incident, but is also proportional to frequency; additionally, the pressure gradient leads the
sound pressure by 90°. These (unsurprising) consequences of differentiation can be
eliminated by appropriate filtering; specifically, by integration with respect to time and
multiplication by c;

cgfd, Rip)dt = ¢ jkcos(@) cos(f ) p
JW

= ch cos(q) cos(f ) p (3.12
= cos(q) cos(f ) p

Note that the dependence of the amplitude on frequency, and the phase shift, are eliminated
by the integration; multiplication by ¢ ssimply removes a constant scale factor that would

otherwise appear. It isincluded here for convenience, but in areal microphone capsule it may
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be considered to be one factor contributing to the total responsivity; hence, it is not of
fundamental importance, and the fact that the velocity of sound may vary dightly with
atmospheric conditions is not significant so far as the present exposition of theory is
concerned. This will be referred to henceforth as the “equalised (pressure) gradient
response”. In most cases, the integration is inherent in the operation of the transducer. The

polar pattern of this microphoneis
M(q,f) =cos(q)cos(f ) (3.13)

This is the well-known dipole, “figure-of-eight”, or “bidirectional” polar response
associated with a pressure gradient microphone. It has one positive and one negative lobe;
positive in this context implies that the output is in phase with (of the same polarity as) the
sound pressure, while negative indicates that the output is in antiphase with (of opposite
polarity to) the pressure. The two-dimensional (planar) polar pattern is obtained by setting
f =0 sothat cos(f ) =1 and

M (@) = cos() (3.14)
To obtain other directional responses, a microphone which responds to a weighted sum of
pressure and equalised pressure gradient may be used; proofs that specific capsule designs

have such a response may again be found in the literature [11] [57] [71] [77] [93]. The output

of such amicrophoneisgiven by
v=G—2_[ap+bogi, Mp)ct] (3.15)
a+b !
or, by substituting from equation (3.12),

V= Gﬁ[a+bCOS(Q)COS(f )]p
=GM(@.f)p

(3.16)
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where a and b are constants that define the ratio of the pressure and equalised pressure

gradient components, G is an overall responsivity constant, and M (q,f ) isthe polar pattern
M.f)= ﬁ[a+ boos@) cosif )] (3.17)

M is normalised to unity in the direction of maximum response; this direction, defined by U,
is often termed the “directivity axis’ of the microphone. The polar patterns of all first-order
microphones exhibit “axial symmetry”; the three-dimensional pattern may be obtained by
rotating the two-dimensional response about the directivity axis.

Equation (3.16) may equivalently be written as

1 T
V=Gm a+bul>d]p (3.18)

where d isaunit vector pointing in the direction from which the wave isincident, so that
k =kd (3.19)
and

M@.f) =ﬁ a+bﬁl>6|] (3.20)

This form is convenient when working with several microphone capsules within a common
coordinate system, and for that reason will be useful later in thisthesis.

Henceforth, a “pure’ first-order gradient microphone, as described by equation (3.12), will
be described as a “first-order gradient microphone’, while a microphone of the type
described by equation (3.15) will be termed a “first-order microphone”. Hence, a first-order
gradient microphone is afirst-order microphone with a = 0.

When a=b=1, aso-caled “cardioid” (implying “heart-shaped”) response is obtained
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G
Veardioid = E[l'*' cos(@) cos(f )] p (3.22)
while putting a=1 and b =3 resultsin a“hypercardioid” pattern

G
Vhypercardioid = Z[l-l- 3C03(q ) COS(f )] p (322)

A “supercardioid” is obtained by setting a =3 and b =5, while any pattern for which a>b
is termed “subcardioid’. Plots of cardioid, hypercardioid, supercardioid and representative
subcardioid polar responses are given in figure 3.3.

Use of this nomenclature is not entirely standardised; some authors describe as
hypercardioid or supercardioid any microphone where a<b, distinguishing between
different patterns by the angles at which the nulls occur or by the ratio of the front and back
responses; hence, a microphone with a=1 and b=3 may be described as a “110°-null
hypercardioid” or as a “6 dB front-to-back hypercardioid”. Cardioid microphones are
sometimes described as “unidirectional”, although this is rather difficult to justify, since a
cardioid response is only 6 dB down at 90° off axis.

In the case of a rea microphone capsule, the values of G, a, and b may be frequency-
dependent, so that the responsivity and / or the polar pattern vary as functions of frequency;
such behaviour is usually considered to be undesirable [37] [74] [93].

We observe that the polar pattern of an omnidirectional microphone is a zeroth-order
spherical harmonic, while from equation (3.13) it can be seen that the polar response of a
first-order pressure gradient microphone is a first-order spherical harmonic. Furthermore,
from equation (3.17) it can be seen that the polar response of a first-order microphone
responding to a weighted sum of pressure and pressure gradient is the equivalently weighted
sum of a zeroth-order and afirst-order spherical harmonic.

If afirst-order figure-of-eight microphone is rotated so that U, =y, then the resulting polar

patternis

M., @.f)=sin(q)cos(f ) (3.23)
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Figure 3.3: Representative First-Order Polar Patterns
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whileif U, =z then the polar responseis

M, @.f)=sin() (3.24)

Now, any other value of U, may be expressed as a linear combination of X, y and z. It
follows that the polar response of any first-order gradient microphone may be expressed as a
linear combination of cos(@)cos(f), sin(@)cos(f) and sin(); that is, as a linear
combination of the three independent first-order spherical harmonics. Furthermore, if the
outputs of three co-located mutually orthogonal first-order gradient microphones are
available, then the output of a notional gradient microphone in any orientation may be
synthesised by forming a suitable linear combination of the three capsule output signals.
Since the response of a general first-order microphone, as in equation (3.15), consists of the
weighted sum of an omnidirectional component and a first-order gradient component, it
further follows that the polar response of any first-order microphone may be described using
the zeroth-order and three first-order spherical harmonics, and that, given the outputs of an
omnidirectional microphone and three mutually orthogonal pure first-order gradient
microphones, all co-located, the output of a notional first-order microphone of arbitrary polar
pattern and orientation may be synthesised. It will be appreciated that it is not in reality
possible to arrange for such a set of microphones to be exactly co-located; this will be

discussed in alater chapter.

3.2: Second-Order Pressure Gradient Microphones

The second-order directional derivative of sound pressure is given by G, XN (G, XNp); it isthe
directional derivativein the direction U, of the scalar field which is the directional derivative
in the direction U, of the sound pressure. In general, U, * U,; however, we will consider first
the case where the two vectors are equal. Let U, =0, =X in the microphone coordinate

system, then
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a, N (4, Np) = x N (x Np)
=xN(jkcos(@)cos(f ) p)
= jkcos(q) cos(f )x Np (3.25)
= (jk)*cos®(q)cos’(f ) p
=-k?cos’(q)cos’(f ) p

As one would expect, equalisation of a second-order gradient response requires a filter which

isadouble integrator. The microphone output is therefore given by

v=c? fa, N(d, Np))dtct (3.26)
Applying such equalisation, we obtain, in the current case, an output signal
v =cos’(q)cos*(f ) p (3.27)

Microphones having such axial quadrupole, or second-order figure-of-eight, polar responses
were first described by Olson [70] [76]. Note that the pattern has two lobes, but as well as
being narrower than in the first-order case, they are both positive.

If two second-order figure-of-eight microphones are positioned with their directivity axes
oriented respectively in the x and y directions and their outputs are added, the resulting signal

is

v =c? Y% R(X ) + § N (§ xNp) ) el
= [cos? @) cos?(F ) +sin* (@) cos?(F ) p (328)
=cos’(f ) p

Microphones having this second-order toroidal polar pattern have been investigated in the
context of their potential application to conference telephony [25] [78] [80] [82]. It is
possible to construct first-order toroidal microphones, but these require broadband 90° phase-

shift circuits and have a phase response that varies with the direction of incidence [95].

We now consider acase where U, * U,. Let U, =X and U, =; then the microphone output
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v=c? 3y N (% Np))tclt
= c2 &gfy *N(jk cos(@) cos(f ) p))ditc
= c2 3} jk cosig) cos(f )y p)dtctt
= c? ¢¢{ ik cos(a) cos(f ) jksin(a) cos(f ))pelct (3.29)
=¢? o) k?)cost@) sin(@) cos? (f ) ptatt
= cos(q)sin()cos”(f ) p
:%sin(Zq)cosz(f )p

This exhibits the tesseral quadrupole, or “clover-leaf”, polar pattern considered by Gerzon
[37] [38] [39]. The planar tesseral quadrupole pattern is shown in figure 3.4; note that axial
symmetry is not present, and that the three-dimensional response can not therefore be
obtained by rotation of the planar polar pattern. It may not be immediately apparent that this
directional response is very useful and, indeed, in isolation it probably is not. Note, however,
that it corresponds to one of the second-order spherical harmonics; it will be demonstrated
later that pickup patterns of this form are useful in conjunction with other microphones
having different polar patterns, and are also specifically required for second-order ambisonic

recording.

Blue® positive (in phase)

Red ® negative (antiphase)

Figure 3.4: Planar Tesseral Quadrupole (“Clover-Leaf”) Polar Pattern
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A very large number of polar patterns may be obtained by combining zeroth-, first-, and
second-order components. Extending equation (3.15) to include a second-order gradient term

asin equation (3.26), we obtain for the output of such a microphone

v= le [ap + biegfi,, %Mp)lt + b,c? i, , 4M(G ,, >p) clct] (3.30)

where the constants a, b, and b,, which specify the relative weightings of the pressure, first-
order gradient and second-order gradient components, as well as the three direction vectors,
may all be chosen independently. The normalising constant 1/k has the same purpose as the
1/(a+b) factor in thefirst-order case, but it is not necessarily equal to I/(a+b, +h,).

If al three direction vectorsare equal, a=0, and b, =b,, then the polar pattern obtained is

the sum of a co-located first-order and second-order figure-of-eight with a common axis and

equal axia responsivity;

v=G 1 [cos(q Ycos(f ) + cos®(q) cos’(f )] Y
> (3.31)

= %[1+ cos(q) cos(f )]cos() cos(f ) p

This polar pattern is sometimes referred to as “second-order unidirectional”, athough this
term has also been applied to polar responses achieved by combining the first-order and
second-order gradient elements in different ratios, possibly including a pressure component
as well [70] [74] [79] [81]. The term “second-order cardioid” is also used, although the
“heart” shape is no longer apparent. It will be noted that this response is very much more
directional than the first-order cardioid, having nulls at 90° and 180°, and very small
(negative) rear lobes (see figure 3.6 at the end of this section).

It has previously been shown that the output of any first-order microphone can be
synthesised by taking a linear combination of the outputs of four coincident microphones
having appropriate polar patterns. We now consider the extension of this concept to second-
order microphones.

Let
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0,=x vy, z] (3.32)
and

a,=[x, y, 2] (3.33)
We may then write

ix fy “fzg
‘Xz%lxl‘l% +y111}§+211%g yzﬂly:xlﬁ[ +y1:||11p A?Tpg
+22ﬂ1:xl‘|%p+yl‘|%p 211111%; (3.34)
= XX, 11]1 (x1y2+y1x2)1?xﬂp+(xlzz+z1x2) Tp +y1y21111
+(V12, +2,Y,) 1111;112 +22, 111;)

Any second-order pressure gradient may thus be expressed as a linear combination of six

second-order partial derivatives. In the plane wave case

ﬂ ?cos’(q)cos’(f ) p (3.353)

%2

1 x‘ﬂy k*cos(q)sin(@)cos(f ) p (3.35b)
=- 1k?sin(2g)cos’(f ) p

p — L2 ;

ey~ K cost@)cos(F)sin( ) p (3:350
=- $k*cos(@)sin(Zf )p

ﬂzg =-k?sin?(q)cos*(f ) p (3.35d)

Ty

ﬂzp _ L2

‘ﬂyﬂz -k“sin(g)cos(f )sin(f ) p (3.350

=-1k?sin(g)sin(2f ) p
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2
15:-%9&«m

and so

A ~

0, (0, XRp) = - k2[x,x, cos*@) oS (F ) + (x,, + ¥1%,) cos(a) in(@) cos* f )
+(%,Z, +,%,) cos(q) cos(f ) sin(f ) +y,y, sin?(q) cos’(f )
+(y,2, +zy,)sin(@) cos(f )sin(f ) + z,z, sin*(f )]p

=-k’M@.f)p

where

M (q,f) =C,cos’(q)cos’(f ) +C,cos(q)sin(q) cos’(f )
+C, cos(q) cos(f )sin(f ) + C,sin’(q) cos*(f )
+C, sin(q) cos(f )sin(f ) + C,sin*(f )

with

CL=xX%,
C, = XY, tViX,
C,=x2,+2X
Ci =Y,
Cs =1z, +27Y,
Ce =227

The Laplace series expansion of M (q,f ) has coefficients

A, =1iC +1C,+1iC;
A=0

A, =4C,- 1C,- 4C,
A,=0

A1 =3GC,

(3.35f)

(3.36)

(3.37)

(3.383)
(3.380)
(3.380)
(3.38d)
(3.38¢)
(3.38f)

(3.39)
(3.390)
(3.390)
(3.390)
(3.3%)
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A, =5Ci- 5C, (3.39f)
B, =0 (3.399)
B,, =1C, (3.39h)
B,, =1C, (3.39))

(This may be established either by using the formulaegiven in Chapter 2 (equation (2.10)), or
by manipulation using trigonometric identities.) Note that the three first-order coefficients are
equal to zero, regardless of the values of the elements of U, and U,; hence, a second-order
gradient microphone never has a first-order spherical harmonic component in its polar
response. Note also that

A= (3.40)

This shows that the polar pattern of a pure second-order gradient microphone can include a
zeroth-order spherical harmonic and, indeed, will always exhibit such a component unless
u, >, =0; i.e, unless the two vectors are perpendicular. It is not possible, however, for a
single second-order gradient microphone to have a purely zeroth-order polar pattern (this is
proved in Appendix 1).

There are only five second-order spherical harmonics in the Laplace series. Hence, the six
partial derivatives which appear in equation (3.34) result in an expression with only five
second-order terms, along with a zeroth-order term. This can be accounted for by the

trigonometric identity

cos’(q)cos’(f ) +sin®(q) cos*(f ) +sin®(f )° 1 (3.41)

or by noting that a plane wave satisfies the Helmholtz equation

RZp=-k?p (3.42)

where

45



On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

It should be noted that if the sound field does not satisfy equation (3.42) then equation (3.34)
cannot be expressed in terms of zeroth-order and second-order spherical harmonics in the
manner described above, since the sound pressure and second-order derivatives can not then
be assumed to be linearly dependent; this is an important observation, which has significant
implications for second-order ambisonic systems, and will be discussed in more detail in
subsequent chapters. It should also be noted that no further linear dependencies can exist
between the sound pressure and the second-order partial derivatives, because the spherical
harmonics are linearly independent.

The polar patterns associated with the partial derivatives in equations (3.35b), (3.35c) and
(3.35€) are second-order spherical harmonics. It may be seen that the remaining two second-
order spherical harmonics are associated with combinations of pressure and second

derivatives such that

TP TP _ 2 cos(ay) cos?(f) (3.443)
™y P '
, )
%%Lf +k?pe=- %kz(sgnz(f)- 1)p (3.44b)
4]

In Appendix 1, it is proved that no other second-order partial derivatives of sound pressure
result in polar responses which are second-order spherical harmonics.

Given an omnidirectional pressure microphone and five second-order pressure gradient
microphones with polar responses corresponding to the five second-order spherical
harmonics, al co-located, any possible second-order gradient microphone in any orientation
may by synthesised by forming a suitable linear combination of output signals. If three first-
order pressure gradient microphones corresponding to the first-order spherical harmonics are
also included, then any possible second-order microphone of the form represented by
equation (3.30) may be synthesised. Note, however, that while the spherica harmonic
decomposition of a polar response is unique, there is often more than one way in which that

polar pattern may be obtained in terms of the second-order partial derivatives; that is, there
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may exist a multiplicity of second-order pressure gradient microphone arrangements which
give the same response to a plane wave, but cannot be assumed to give equal outputs in
response to arbitrary sound fields. For example, the toroidal response of equation (3.28) may
also be obtained using an omnidirectional microphone and an axial quadrupole with
G,=0,=2

In passing, it may be observed that two of the polar response characteristics described above
may easily be generalised to nth-order [70]. An nth-order figure-of-eight response is obtained
by taking the nth-order directional derivative with all n direction vectors equal; the polar

pattern is given by
M (q,f)=cos"(q)cos"(f ) (3.45)

The sum of figure-of-eight responses of order n and n- 1 having a common axis and equal

maximum responsivity is an nth-order cardioid for which

M@Q,f)= 1[cosn (@) cos”(f ) +cos™*(q) cos™ *(f )]
2 (3.46)
= %[1+ cos(q) cos(f )]cos™ () cos™(f )

Plots of nth-order figure-of-eight and cardioid polar responses for values of n up to and

including 6 are given in figures 3.5 and 3.6. These polar patterns all possess axial symmetry.
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n=1 n=2
n=3 n=4
n=5 n=6

Blue® positive (in phase)

Red ® negative (antiphase)

Figure 3.5: First-Order to Sixth-Order Figure-of-Eight Polar Patterns
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Blue® positive (in phase)

Red ® negative (antiphase)

Figure 3.6: First-Order to Sixth-Order Cardioid Polar Patterns
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3.3: The Directivity Factor

One way in which the directional properties of a microphone may be quantified is by the
“directivity factor”, denoted by g (or sometimes by Q). This is defined as the ratio of the
mean square output voltage generated by the microphone in response to a plane sound wave
incident from the direction of maximum response to that generated in response to a perfectly
uniform diffuse sound field having the same total acoustic power [11] [62]. Hence, the
directivity factor measures the ability of the microphone to emphasise the desired sound
source over ambient sound when that ambient sound is directionally homogeneous; this is
often approximately the case, for example, for reverberant sound. Where there exist a small
number of discrete, spatially localised sources of unwanted sound, the exact shape of the
polar response, and particularly the locations of the response nulls, provides a more
appropriate indicator of discriminatory ability.

The directivity factor is given by

9= 5572 4 (3.47)
O M @,f)| coslf )df dg
0-p/2

When the polar pattern exhibits axial symmetry, the directivity factor may found from the
planar polar response using the simpler formula
2
9=5 (3.48)
N 2 .
oM @)[ sin@)da
0

This applies to al first-order microphones; however, many second-order polar patterns are
not axially symmetrical. Evaluating g for an arbitrary first-order microphone with polar

pattern given by equation (3.17) gives the result

(a+b)®
a’ +1b?

g= (3.49

50



On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

It may be shown that the maximum possible directivity factor attainable using an nth-order

pressure gradient microphone is given by [43]

U (N) = (N+12) (3.50)

Hence, the maximum directivity factor which may be achieved using a first-order
microphone is 4; thisis in fact obtained with a 110°-null hypercardioid. First-order figure-of-
eight and cardioid microphones both have directivity factors of 3 (and an omnidirectional
microphone, by definition, has a directivity factor of 1). It is clear from equation (3.50) that
second-order microphones may have directivity factors as high as 9; this is one reason why
their use may be considered desirable, since it indicates a substantialy greater ability to

discriminate against ambient and reverberant sound [76].

3.4: Relationship Between Particle Velocity & Pressure Gradient

First-order pressure gradient microphones are often referred to as “velocity microphones’; in
the opinion of the author thisis unfortunate and potentially confusing, since it is the pressure
gradient and not the particle velocity that actuates the microphone. The terminology can
nevertheless be justified by reference to the relationship that exists between the pressure
gradient and particle velocity fields in a sound wave.

As one of the fundamental equations governing the propagation of sound waves, we have
[11] [68]

v

Np=-r, i

(3.51)

where v is the instantaneous particle velocity and r , is the static (undisturbed) density of the
medium; note that this equation does not depend on the sound field being a plane wave, but is

of general applicability. We therefore have for the directional derivative of sound pressure
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a, Np=- roﬁl% (3.52)

Integrating with respect to time and multiplying by c, we obtain

/0 | \& ~ ﬂVO
cA{u, Np)dt =cee- r U, x—=dt
d . N\p) 062 oUs o
2 Ivo
=-cr U, x—=dt
°Og™ gt 5 (353)
~ Avo
=-cr,u —— It
° 1X0é'ﬂtﬂ

=-cr U, W

The equalised pressure gradient is thus proportional to the component of particle velocity in
the same direction, so that a pressure gradient microphone may be said to measure the
particle velocity. The constant cr, is known as the “characteristic specific acoustic
impedance” of the medium.

A possible misconception arising from use of the term “velocity microphone” is that a
second-order pressure-gradient microphone measures the particle acceleration. Thisis not the
case; since the particle acceleration is by definition the derivative with respect to time of the

particle velocity, we may rearrange equation (3.52) to give

u, Np (3.54)

from which it is clear that the particle acceleration in a given direction is proportional to the
first-order pressure gradient (without equalisation) in that direction. Meanwhile, taking the
equalised directional derivative in the direction U, of each side of equation (3.53) gives

c? c‘ﬁﬁz (G, Nip) ettt = iy, N(- cr (U, )dt
=-¢%r o0y, N(U, )t
=-c’r U, N((‘jﬁl w)dt)

=-c’r 0, >N(Gl X(j/dt)

(3.55)
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showing that an equalised second-order directional derivative of pressure is proportional to a
first-order directional derivative of the component of particle displacement in a given

direction.

3.5: The Proximity Effect

It iswell known that the low frequency response of a microphone having a pressure gradient
component is accentuated when the microphone is positioned close to a sound source. Thisis
known as the “proximity effect”, or (since it isthe lower frequencies that are emphasised) the
“bass boost effect”; it is generally considered to be undesirable, although in some musical
applications the effect may be subjectively pleasing [13]. One motivation for seeking an
understanding of this effect is that it facilitates the design of compensating filters. However,
irrespective of whether such filter design is intended, the proximity effect is a significant
factor in the performance of gradient microphones, and an understanding of it is required to
properly characterise the expected behaviour of the second-order soundfield microphone.

An analysis of this effect will now be presented. Although some of the results regarding the
first-order case are standard, the treatments presently available in the literature with which
the author is familiar are somewhat unsatisfactory; even the more acceptable presentations
(such as Beranek’s [11]) lack generality and fail to adequately describe the derivation.
Furthermore, many discussions are presented with reference only to a single type of
transducer, so that the incorrect impression may sometimes be created that the proximity
effect is a defect of a particular microphone design, whereas it is in fact an inevitable
consequence of measuring the pressure gradient. A very few results relating to specific
second-order microphones may be found in the literature [39] [76] [70]. These have again
been given amost entirely without derivation; additionaly, inconsistencies in the results

presented in [39] suggest that they may not be entirely correct.

3.5.1: Proximity Effect for First-Order Microphones

Until now, the analysis presented has been concerned exclusively with plane waves. Close

to a small source of sound, it is necessary instead to consider spherical waves [11] [89].
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Assuming a point source located at the origin, the sound pressure field is described by

p= ?e"‘w" < (3.56)

where A' is the amplitude at unit distance from the source, and r is the distance from the

source to the measurement point. The derivative with respect tor

ﬂp A.gg-'*' jkr gej(wt kr)
2
r aae L o (357)
+ ro
= - ({\ J p
o
In spherical polar coordinates, the gradient of afunction fis given by [68]
e q U
é — u
e " g
N Tt g (359)
€r cos(f ) Tq U
€ 1qc U
e —-—— \u
e rff g
so that
e a+jkro el
& A2ty
. & €T o a
Np = a 0 G
é 0 a
e 1
e a
o élu
— A.Sé-"' jkr Qnitwt- k) §0u (3.59
& r’ g eu
€0
I$'+ Jkr o kr) %y
= A ](Wt r)
g ﬂ e
_ &+ Jkro ~
- Q pur
o
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where U, is a unit vector in the radial direction; that is, pointing directly away from the

origin. It is convenient now to convert this expression into cartesian coordinates. At the point
(r.a.f),

U, =cos(q)cos(f )x +sin(q)cos(f )y +sin(f )z (3.60)
(seefigure 3.7).

cos(f) % o
cos( @) sinf §)

sinf @) cosld)

Figure 3.7: Cartesian Components of Radial Vector U,
Substituting for U, in equation (3.59) gives

‘ ecos(q )cos(f )u
éﬁtj Qi k”e sinq) cos(f ) (3.61)
© g snf) §

2
©
II

It is clear from this that Np depends on the point at which the measurement is taken. This

must of course remain true whatever coordinate system the gradient is expressed in, but as
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can be seen from equation (3.59), the dependency does not appear explicitly when the result
is written in polar coordinates; rather, it is implicit in the use of U,, which itself depends on
position, as is evident from equation (3.60). Now, as before, let U, be a unit vector pointing

inadirection (q',f ');

écos(d’) cos(f ')
0, = gsin(@")cos(f ) ¢ (3.62)
g snf) H

The directional derivative in the direction U, is then given by

A aa+ jkr
u1><Np:-Ag ri

=- aé+rjkr g{cos(f_) cos(f ')cos(q - q') +sin(f )sin(f ')]p
é g

Jeostf ) cos(f ") cos(q - q*) +sin(F ) sin( )] e’
° (3.63)

which is similar to equation (3.6), athough the complex “gain” is a more complicated
function in this case. It should however be remembered that the propagation direction (q ,f )
depends on the point at which the gradient is taken, whereas in the case of a plane wave the
direction of propagation is everywhere the same.

It is again useful to express this result in term of a coordinate system centred on the
microphone. Consider a point source located a distance r from the origin, with coordinates

(X5, Ys: Z); then
r=yx’+y’+z° (3.64)

Let r be the distance from the source to an arbitrary point (x,y,2):

F=(x- x)2+(y- y)? +(z- )2 (3.65)

The pressure at such a point is then given by
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D= réei (wt- ) (3.66)

and, by the chain rule,

! . ~Uu
Np iiéej(wt-kr)u éﬂ_rL,J

Wit b éfy
g (3.67)
u

ex- XSU
§-+ Jkr 0 Jpi(wt- k) le

~yy
erz & 7s0

6z- ZH

Since the coordinate system is centred on the microphone, we evaluate this at the origin, so

that x=y=z=0and r =r;

é u
N -é--*_]kro wt- kr 1e XSU
Np| =-Ag——5— 2 e/l ) ysu
e I [}
& 2.6 (368)
— A-gé-"' jkr er(wt—kr)f:
& 1’ g

where 1 is a unit vector pointing in the direction of the source; hence, if that direction is
defined by angles (q, f), then

écos(q) cos(f )u
f = gsin(a)cos(f ) (3.69)
g snf) @

Adopting as before the convention that U, is adigned with the x axis of the microphone

coordinate system, the pressure gradient is given by
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% p|_ —Acos(q)cos(f) ‘kr St KT Qgitwt-to) (3.70)
(%]

and the equalised pressure gradient by

COX >Np| )dt = A'cos(q) cos(f )g Jkr (_)ej(wt kr)

(3.71)

QIIO:

so that the output of a first-order pressure gradient microphone in response to a spherical

waveis

Vorad = = GA'cos(q) cos(f )g Jkr O e Wt-k)

(3.72)

QIIO:

The proximity effect bass boost factor is defined as the ratio of the amplitude of the pressure
gradient microphone output to the amplitude of the output of an omnidirectional pressure
microphone, when both are positioned at the same point in the sound field, and the pressure
microphone is such that its response to a plane wave is identical to the response of the
gradient microphone to a plane wave arriving on axis. The output of the pressure microphone
in this case is therefore

—gheitw (3.73)

r

omn|

It should be noted that there exist dlightly different definitions of the bass boost factor, which
depend on using a pressure microphone with different responsivity as the basis for
comparison; in most cases, the results obtained using aternative definitions (such as those
guoted in [76]) differ only by a multiplying constant. Let the bass boost factor be denoted B,
then
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B= Vgrad
|Vomni |
GA'|cos(q) cos(f )| lf JI:r
: jkr
chA (3.74)
r
/ 2,2
= |cos(q) cos(f )|r %kzr
V1+k?r?
= |cos(qr) cos(f )| B

Consider the case of on-axisincidence, which isthe most practically important case (and the

one most often mentioned in the literature); cos(q)cos(f ) =1 and

2.2
B= \/1+klr< r (3.75)

When r islarge compared to the wavelength of the incident sound wave, kr is large compared

to unity and

vkirz

=1 3.76
" (3.76)

B»

Therefore, at distances from the source which are large compared to the wavelength, there is
no bass boost. Thisis to be expected, since at a distance from a small source which is large
compared to wavelength the spherical wavefront may be approximated over a small region
by a plane wavefront.

When r is small compared to wavelength, kr is small compared to unity and

B» —=— (3.77)

Hence, close to the source the bass boost varies inversely with kr; at a fixed distance, the

microphone output rises by 6 dB for each octave drop in frequency. This is a well-known
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result [13] [39] [76] [70].

For other directions of incidence, the response varies with kr in the same way, although the
bass boost is scaled in accordance with the polar pattern. This scaling is, of course, a
consequence of the decision to compare with a pressure microphone having a plane wave
response equal to the maximum response of the gradient microphone. Note that for g = +90°,
B =0, because the gradient microphone does not respond to waves from any direction in that
plane.

We now consider the general case of a microphone having a mixed pressure and pressure
gradient response. Substituting equations (3.66) (with r =r)and (3.71) into equation (3.15)

gives a microphone output

e A Jkro
v=G @ e/ ™) + pA'cos(q ) cos(f f"W‘ o
atber s(q) cos( )g

e ] ey enid

+ jkr d’l:lﬁ](wt k)

1
= GAm—ea‘* bcos(q) cos(f )g (3.78)

jkrou

= G—ea+ bcos(q) cos(f )g

30 that

go 1 aafjkrg
a+b '

_ 1 jakr bcos(q)cos(f) jbkr cos(q ) cos(f )|
a+b| jkr jkr jkr

1 |bcos(q)cos(f )+ jkr(a+bcos(q) cos(f ))|
“a+b jkr

1 +/b%cos?(q)cos?(f ) +k2r?(a+bcos(q) cos(f ))°
“a+b kr

(3.79)

This allows the bass boost to be calculated for any first-order microphone and any direction

of incidence. Consider acardioid, with a=b =1:
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g=1 \Jcos? () cos? (f ) + k2r2(1+cos(q) cos(f ))?

3.80
2 kr (380)
For frontal incidence, this gives
/ 2,2
B= ELKI’ (3.81)

2 kr

which is not dissimilar to equation (3.75). For large kr this again tends to unity, as one would

expect. For small kr

B» % (3.82)
r

This again gives a 6 dB rise for every halving of kr, but 6 dB below the response of the pure
pressure gradient microphone. Thisis another standard result; the lower boost occurs because
only the pressure gradient element of the response is accentuated by the proximity effect, and
so the proportional increase in the total output is less. For incidence from the rear (q =180°

and f =0°, sothat cos(q)cos(f ) =-1),

B=_— (3.83)

The cardioid pattern has a null in this position, and for large kr, B becomes negligibly small,
approaching the zero response that would be produced by a plane wave. However, for close
sources, the implication is that the response no longer shows a null in this position. Thisis a
reasonable conclusion; the null is due to cancellation between the pressure and pressure
gradient components, and depends on them being equal in magnitude and in exact antiphase.
Close to a source of spherical waves, the pressure gradient is increased in amplitude and
phase-shifted, so exact cancellation does not occur. This reasoning is also applicable to other
composite microphones; hence, it may be concluded that the polar pattern of a microphone
which responds to a combination of pressure and pressure gradient will change when the

microphoneis placed close to a small sound source.
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3.5.2: Proximity Effect for Second-Order Microphones

We now proceed to consider the response of second-order gradient microphones to spherical

waves. From equation (3.67), we know that

fo_ A A+ ko j(wt- k)
o == (X X)em——ze 3.843)
x T ( XS)% 2 g (3.849)
A A+ KO i
% =-—=(y- ys)g—rj2 ge’( v (3.84b)
fP_ A A+ JK O we- )
P__ A, &N 3.84c
2 T EC (3.84c)
Differentiating a second time gives
? ki @ 3- KT +KT2U 0
—fTXE’L S x)'g ’F4 T (3.859)
é a
2 jk ® 3- 3kr+k220u o
1 l23:_ J F(y- v’ j ud ) (3.85b)
Ty ra r m
AL+ kT @ 3- j3KkF +KHF2u .,
ﬂ -2 ~]2 +(z- Zs)zg j ad 5 el k) (3.85¢C)
r e? r r P
A ® 3- J‘?’kr +k2 j(Wt kr)
Ax- 3.85d
0 y - = (X X)(y- ys)g =i 5 (3.85d)
Tp_ A - 3 KO e
- = (x- X)(z- zs) = e’ (3.85¢)
™z 7 E r p
Tp_ A - J3K+KkT2 0 j(wt- k)
=-= Z- e 3.85f
Wz T (y- ¥ Zs)g = : (3.85f)

As previously, we now assume that the measurement point is the origin, so that

Xx=y=z=0, r =r, and

‘HZIO:_ el+jkl’ 288 3- j3kr +Kr? AU i

—=-—a——+ 3.86
ﬂXz r g r2 g r m—lﬁ ( a)
2 A€+ jkr @ 3- j3kr +Kr? U i

1 F2)= J yzg ) ! e (3.86h)
Ty r ég r2 r 2
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Pp__ Aé+jkr, o 3- j3kr+k2r2%ej(wt_kr)
12 re r? r4 o
ﬂzp =- Axsys% 3- 13k4r +k2rzgej(wt—kr)
Xy r r p
Tp_ A__a3-j3k+ko?0
™z szzsg 4 el
@
Tp_ A @3- j3kr+kor?0 ik
ﬂYﬂZ_-T stg ré =
@

2 A 2 2
Tp_ Ag+ lkr + cos2(q) cos(F )& 13k2”k oy
™ re 1

2 kr 3kr +k’r? &u
“—5’=-—e—’+sn @)cos’(f I3 S
Ty rer r a0

2 kr @ 3- j3kr + K2l
ﬂ_:-_e_l Z(f)g J . e
12> re r A
Tp_ A . 2\ 3 3K +KT20 e

=- —cos(q)sin(q)cos’(f el ttk)
oy s()sin(g)cos’( )g : ﬁ

ﬂzp _ J'?’kr'*'k2 Dl wt- ko)
fixTz ? g
Tp_ A - 3K + K20k

=- —sin(q)cos(f ) sin(f el (k)
Wiz T (@) cos(f )sin( )g - b

Finally, application of double-integration filtering gives

@ 3- j3kr +kr?

j(wt- kr)

j(wt- kr)

dJ

& OLP et = ?1:3_”( + 005'(@) 005" ()

ﬂX k2 2

€1+ jkr @ 3- j3kr +k’r2 ol
=g e kZ:Z oo (@) cos’F)g ez P
e a
s kr j3kr + k2r? ¢u
czm‘l%—pdtdt ek—J+sm () cos’(f )g sz S e
Y’ rekKT m
+jkr . j3kr + k*r® ¢u
:¢k2_12+sm2(q)cosz(f ) sz LS
e KT a0
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Expressing the source location in spherical polar coordinate form, we obtain

j(wt-kr)

j(wt- kr)

(3.86¢)

(3.86d)

(3.866)

(3.86f)

(3.87a)

(3.87b)

(3.87¢)

(3.87d)

(3.87¢)

(3.87f)

(3.883)

(3.88b)
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T kr 3k +K2r2 680 e
czm—gzzpdtdt e_212 +sin’(f )g sz P
e (3.880)
Jkr 3- j3kr +krzou
kz 2 n’(f )g K2r2 %p
2 2 2
czc‘fh—%dtdt:?cos(q)sin(q)cosz(f )ée 3- Jsfr;k ge‘v” 3
(3.88d)
o 2,2
= cos(q)sin(q) cos’ (f )ge Jszkrz T g
2
2 1 2
& P it :Acos(q)cos(f ysin(f )& 3- JSkr + Kk ge‘(v” ¥
Qg™ AN
2 3- j3kr +kxr%0 (3859
= cos(q ) cos(f ) sin(f )g 5 =
K°r P
2
czdﬂwpdtdt——sn(q)cos(f)sn(f % Jszf“:k SR
2
. 2 3- j3kr +K2r2o (385
=sin(q)cos(f )sin(f )g 53 =
ker [}

To establish the response to a spherical wave of an arbitrary second-order gradient

microphone, we consider the equalised version of equation (3.34):

C (‘]\iu >N(U pr))dtdt =c’ (Iﬁxlxz i p +(X Y, +YiX%;) ﬂxﬂp
Tp,.,, TP
+H(X2Z, + %) - 12 yly,"2
2 2 A
2+ 2ye) g P+ a2
u ) (3.89)
= X, X,C° (‘ﬁ%dtdt +(X Y, + V,%,)C% ﬂxﬂp dtdit

+(X,Z, + Z,X,)C? Gr“ﬂ P et + y,Y,C? i Edtdt
y

+(y,z, +7,Y,)c’ G:h—pdtdt +2,7,c° CD‘"—pdtdt

Substituting in the equalised partial derivatives from equation (3.88), we obtain
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c? ¢gfd, N (G, *Np))dtdt = M @.f ) p

where

€1+ jkr &
M(@Q,f)= Cleﬁ+cosz(q)cosz(f )g
é

k?r?

+C, cos(q)sin(q) cos® (f )g

+C, cos(q) cos(f ) sin(f )Ee K2

+ jkr

2

3- j3kr +k’r? ol
oY)
a
13kr+k2r20

k2 2
3- j3kr+k*r?9

o}

él . &
+C4ék2—2+sm2(q)cosz(f )g
é r

j3kr +k2r?

k2r2

+C, sin(q) cos(f ) sin(f )ée 3 K2r 2

jkl’

9
]

3- j3kr +k?r 2_

+Cse n’(f )g 2 2

BJ_—

3- j3kr+k2r? g

U
Al

(3.90)

(3.91)

with C,;, C,, etc., defined as before by equation (3.38). The Laplace series for M(q,f) in

this case has coefficients (obtained as before by using the formulae given in Chapter 2 or by

trigonometric and al gebraic manipulation)

A =1C,

A =0

A, =[3C,
A, =0
Ay =3
A, =liC, -
B, =0
B,, =3C;

3- j3kr +k’r?o

- %C1 %C4]§

k2r2 5
@ 3- j3kr +k’r? 9
k2 2 5
o 2.2
kr I}

@ 3- j3kr +k’r?o
g kz 2 -
(%]
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@ 3- j3kr +k’r?

BZ,Z = kzrz

(3.92i)

ol

o
C, =
@

Comparing with equation (3.39), we see that these coefficients have the same values as in the
plane wave case, except that every second-order coefficient is multiplied by the factor
(-3- j3kr +k?r?)/k?r?. The response of a second-order gradient microphone to a spherical
wave is therefore closely related to its plane wave response, and indeed can be found using
the Laplace series decomposition of its polar pattern; from equation (3.90), including an
overal responsivity constant G, we may write for the output of a second-order pressure

gradient microphone in response to a spherical wave

e & 3- j3kr+k3r2au
v=GeA +M,(@q.f )g Sl P (3.93)
& k*r a0

where M, (q,f ) isthe second-order spherical harmonic component of the polar pattern; i.e.,

M,(@.f) =3 A[3sn?(f)- 1] +3A,, cos(@) cos(f )sin(f ) +3A, , cos(2y) cos ()

. . . (3.94)
+3B,, sin(q) cos(f ) sin(f ) + 3B, , sin(2q) cos®(f )
From this, we obtain for the bass boost factor
2 3- j3kr +k°r?¢
B=|A +M,(@,f )g szrz 3 (3.95)

A consequence of this result is that the tesseral quadrupole is the only second-order pressure
gradient microphone for which the polar pattern is independent of kr in the spherical wave
case, since every other second-order polar pattern includes an omnidirectional component.

By way of example, consider the second-order figure-of-eight response described
previously. The Laplace series expansion of the polar pattern in this case has three non-zero
coefficients:

A, = (3.963)

wl-
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A=-1 (3.96h)
Ay =% (3.96¢)
Therefore, the bass boost factor
1 211 3- j3kr +k3r?¢
B=|=+¢- ==[3sin’(f)-1+= 3co cos? (f .
3 g 32[ (f)-1 S(2) cos”( )£ 72
1 1 3- j3kr +k%r?¢
== +¢2 =[3sin?(f 1+ co cos? (f :
3 g 6[ f)-1 S(29) ()£ 2r? .
1 &&1. 1 1 1., 210
=|=+¢& =&n?(f)+=+=cos’(q) cos?(f sin cos-(f )=
332 ()62 @) ()2 @) ()fzj
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This can be seen to be the result that would be obtained using equation (3.88a) directly to
find the response of the microphone. Graphs of B for frontal and 90° off-axis incidence, for

both first-order and second-order pressure gradient microphones, are given in figure 3.8.
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Figure 3.8: Bass Boost for First-Order and Second-Order Pressure Gradient Microphones
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If first-order components are also present, so that we have a microphone of the type

described by equation (3.30), then the response to a spherical waveis

ikr © @ 3- j3kr +k?r?qou
v= GeAb+M(qf)§ T +|v|( f)g Jk“ P (3.99)
r a
and the bass boost factor is
kr O i3kr +k?r¢
Ao+|v|1qf)g ll +M( f)g szrz 3 (3.99)

where M, (q,f ) isthefirst-order harmonic component of the polar response and M, (q,f ) is,
as previously, the second-order harmonic component. Note that direct measurement of
pressure, as well as the second-order derivatives, may contribute to the zeroth-order
component.

An example of a microphone having spherical harmonic components of all three orders is

the second-order cardioid described by equation (3.31). The Laplace series in this case has

coefficients
A =1 (3.100a)
AL=3 (3.100b)
=-1 (3.100c)
A,=1 (3.100d)

30 that the bass boost factor is
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Graphs of the bass boost for frontal, 90° off-axis, and rear incidence are given for first-order

and second-order cardioid microphonesin figure 3.9.

70



On the Theory of the Second-Order Soundfield Microphone

Philip Cotterell

Frontal incidence

£ 5
4
3
1st-order
2nd-order
2 \ \
] w2 T
ke f raclians
90° off-axisincidence
£ i
4
3
1st-order
2nd-order 2
1 \\
“"*-u.,‘__‘_ —
‘_‘_‘_‘_—‘_‘_‘_‘_‘—-—
0
] w2 T
ke f raclians

Figure 3.9: Bass Boost for First-Order and Second-Order Cardioid Microphones
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Figure 3.9: Bass Boost for First-Order and Second-Order Cardioid Microphones
(continued)

3.6: The Blumlein Difference Technique

The “Blumlein difference technique”, so named by Gerzon [37] [51], is a method of using
microphones of a given order to obtain directional responses of higher order. The second-
order soundfield microphone depends on this technique to generate second-order responses
using first-order capsules.

We consider first the use of two pressure microphones to derive a first-order pressure
gradient response. The directional derivative of the sound pressure field may be
approximated by the difference in pressure between two points separated by a small distance
2d;

a ><Np» p(X+du1)' p(x- dul)
! 2d

(3.102)

72



On the Theory of the Second-Order Soundfield Microphone Philip Cotterell

Physically, this may be realised by placing two (omnidirectional) pressure microphones a
short distance apart, and taking the difference of their outputs. This method was used by
Blumlein to obtain a dipole response before the availability of individual pressure gradient
capsules [63]. Combined pressure / pressure gradient responses may be obtained by forming
a suitably weighted sum of the equalised difference signal and the direct output of one of the
individual capsules or, for better results, of a third capsule located midway between them
[37] [38] [70].

Since

G, (@, Np) » x-diy (3.103)

an axial quadrupole may be obtained by taking the difference between the outputs of two
first-order pressure gradient microphones positioned such that each has the same directivity

axis U, and the relative position of one with respect to the other is 2d U, ; see figure 3.10.

b = >|

Figure 3.10: Axial Quadrupole as Difference of Two First-Order Pressure Gradient

Microphones

This was described by Olson (who also noted that the technique may be extended to higher
orders, since an nth-order pressure gradient may be obtained by taking the difference of two
gradients of order n- 1) [70] [74]. It will be appreciated that the same result may be obtained
by taking the sum of two coaxially positioned dipoles pointing in opposite directions.

If general first-order microphones are used instead of dipoles, we obtain (omitting for clarity

the G/(a+b) scaefactor)
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oy (r’JlID+bc(‘jﬁ1 ><Np)dt)
2d
be [~
2d (p|x+da1 ) p|x-dal)+2_g({u1 XNp
» al, Np + bcdl]1 (G, Np))dt

(ap+ begyd, Np)et )

x-d 0,

E

- 0, Np )dt (3.104)

x+d 0y x-di,

Here the difference of pressure components yields a first-order gradient term, while the
difference of first-order pressure gradients contributes a second-order gradient element. In the
particular case a =b, a second-order cardioid is obtained; this was also described by Olson
[70] [74] [81]. Note that care is needed with such arrangements to ensure that appropriate
equalisation is applied to signals representing different orders of gradient.

We may make a more general statement than that expressed by equation (3.103) asfollows:

u, N - G, Np

2d

x+d U,

G, (G, Np) » x-dd, (3.105)

where the two vectors may be chosen independently. A tesseral quadrupole may therefore be
obtained by positioning two dipoles such that their directivity axes are parallel, so that U,
and U, are perpendicular; Gerzon described this approach [37].

We may generalise further by considering the difference between the outputs of two first-
order microphones of arbitrary polar response. A very large number of second-order polar
responses may then be obtained; the possibilities may be further extended by combining the
equalised difference signal with the output from a third microphone located between the
Blumlein difference pair. Some examples are discussed in [37] [38]. It will be appreciated
that, in principle, the polar response and orientation of each of the microphones could be
chosen independently; this will not be pursued further here, since the principles are
adequately demonstrated by the simpler cases already considered.

A satisfactory Blumlein difference signal can be obtained from a pair of microphones with
any given separation only over a restricted frequency range. At frequencies where the
distance between the microphones is no longer sufficiently small compared to the
wavelength, the desired polar response is not obtained. Gerzon stated that the technique

performs “reasonably well” up to frequencies where the microphone separation is equal to
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half the wavelength, although such a judgement is necessarily somewhat inexact, since it
depends on the amount of variation from the nominal response which is considered
acceptable. At low frequencies, the difference in sound pressure between the microphones
becomes small, and the Blumlein difference signal therefore becomes small compared to
spurious signal components arising from difference between the microphones. These
limitations are discussed in detail in [38] and [39].

Each of the first-order pressure gradients in equation (3.103) could be derived by using a
pair of pressure microphones rather than a dipole; this would represent a system employing a
linear array of four pressure microphones to obtain the second-order pressure gradient.
Second-order microphones based on this principle have been investigated [78] [79] [82], but
we will not consider them here since this approach is not directly relevant to the second-order
soundfield microphone. Other techniques which have been used to obtain second-order
microphones include the use of microphone capsules embedded in the side of a hollow
cylinder [80], and the placing of a single dipole close to a plane surface to exploit the
boundary effect, effectively taking the difference between the output of the real microphone
and its acoustic image [25].

We will now consider the use of a rectangular array of four first-order capsules to derive a
tesseral quadrupole in a manner which may be considered to be an extension of the Blumlein
difference technique. It will be seen in Chapter 6 that arrangements of this sort occur in the
second-order soundfield microphone.

Let the four capsules be denoted FL, BL, FR and BR. The positions of the capsules are

Xp =[td, id, 0 (3.106a)
Xy = 1d, id, 0 (3.106b)
X =[id, -1id, 0] (3.106¢)
X =[- 1d, -1d, 0] (3.106d)

and their directivity axes are

U, =[cos@) sin@) 0 (3.1073)
Uy =[- cos@@) sin@) 0] (3.107h)
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(s =[cosi@) -sin@) 0] (3.107¢)
Uy =[- cos@) -sin@) 0] (3.107d)

This arrangement is shown in figure 3.11.
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Figure 3.11: Capsule Configuration for Derivation of Tesseral Quadrupole Response
L et the sound pressure at the centre of the array be
Po = Aet (3.108)

The sound pressure at each of the capsulesis then given by

pe =" p, (3.109a)
Pe. = €= p, (3.109b)
P = €M% pg (3.109c)
Per = €% pg (3.109d)

and the capsule output signals are
_ G [ ~ “] jkdx g,
Vo = 24b a+bu, xdle Po (3.110a)
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v, =—2 la+bii, »dlea (3.110b)
BL a+ b BL O :
G | ~ Al g
Ve = pla* bil ., >d | p, (3.110c)
G I q
Ver = pla* bil o, >d | = p,, (3.110d)
Let V; bethe difference signal
Ve = (Ve - Vg ) - (Ve - Ver) (3.111)
= Ve - Vg - Ver Vg
Substituting in the capsule outputs
V, = a+b{[a+ bl ., >d]e““”XFL - [a+ bl g, >0|]e“‘d*XBL
- [a+ bl ’a]ejka)xm * [a +blg, ﬂ]e;kam}po (3.112)
G )

{a[ejka’XFL - ejka’XBL - ejka’XFR +ejka>’<BR]
at+b

+ b[l'j FLejkd”(FL - l] BLejkdy BL _ a FRejkd)XFR + l'j BRejkd»( BR ] >d}po

NOW SINCE X gr =-Xp s Xeg =-Xg s Ugg =-Up ad Ugp =-Ug , SO

ejka’XFL _ ejka”(BL - e jkdx g +a jhdx

1l jkdxe jkdxg 4 - jkdxg 3 - jkdx g
+b[uFLe Ug € +Ug € Ug € |

ejka’XFL +a jhdxp eika’XBL - e jkdx g

1l jkdxe - jkdxp Y jkdxe o 1 - jkdx g
+blu e Ug € Ug € +Ug € |

G
+

{Za[cos(ka X ) - cos(ka X g )

(en

a
+i2fi, sin(kd ) - {1, sin(kd 5, )|>d}pg

If the capsule separations are sufficiently small compared to the wavelength, then the scalar

products kd - and kd - aresmall compared to unity, and we may write
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G ol (ka i, (kd d
Vg :aT{Za[l- 1]+ sz[uFL(kdxXFL)' uBL(kdxx'3'-)]>d}po

e cos@)u 0
- sin(@) Y3k(- d, cos() costt ) +d, sin(@) cos(f ))=>ip,
g 0 g p
agd, cos(a) cos(q) cos(f ) + d, cos(a)sin(q) cos(f )u

J bkged ,sin(@)cos(q)cos(f ) +d, sn(a)sn(q)cos(f)
Qé 0 i
éd, cos(a ) cos(q) cos(f ) - d, cos(a)sin(q)cos(f ) uo
e d, sin(@)cos(q)cos(f ) +d, sm(a)sm(q)cos(f) >0|pO
@ 0 Hﬂ
é2d, cos(a)sm(q)cos(f )u écos(q ) cos(f )u

Sm(q )cos(f ) ¢ qPo

0 EI g sn(f) é

- (3.114)
= X (d, cos(@) +d, sin(@))sin(q) cos(q) cos*(f ) p,

= JK—22(d,coa) + d, sinfa) Jsina) cos” () g

which is atesseral quadrupole response.
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