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6: The Second-Order Soundfield Microphone

Gerzon stated [40] that a second-order soundfield microphone may be constructed “...using
twelve small cardioid or hypercardioid capsules mounted to form the faces of a regular
dodecahedron having a small diameter ... the second-harmonic aspects of the directional
pickup can be derived from these by techniques similar to the Blumlein difference
technigue.” Since the dodecahedron is the ssimplest regular polyhedron with nine or more
faces, so a dodecahedral array is the simplest arrangement of microphones from which the

nine independent signals comprising the second-order B-format set can be obtained.

6.1: Geometry of the Dodecahedron

It is desirable to maximise the degree of symmetry present in the coefficients of the A-B
matrix, since this smplifies the mathematical treatment (and will also simplify the eventual
implementation).

The symmetry which is apparent in the coefficients of the A-B matrix in the case of the
first-order soundfield microphone is related to the symmetry of the tetrahedron; specificaly,
to the presence of C; operations in the group of rotational symmetries of the tetrahedron[61].
Each C; axis passes through a vertex and the centroid of the opposite face of the tetrahedron.
Rotation by 120° about one of these axes has the effect of taking cos(@)cos(f) to
sin(q)cos(f ) (or vice versa) and etc.; i.e, of inducing a cyclic permutation of the polar
patterns associated with the first-order spherical harmonic component signals. The same
rotation interchanges the faces of the tetrahedron in a corresponding manner.

Such C; operations are also present in the group of symmetries of the dodecahedron. To
maximise the symmetry in the A-B matrix coefficients for the second-order soundfield
microphone, the dodecahedral capsule array is oriented such that appropriate C3 axes (which
pass through two diametrically opposed vertices) are aligned with those of the tetrahedral
first-order soundfield microphone array.

By inspection, two orientations which satisfy this criterion may be identified; selection

between these is arbitrary. The chosen orientation is such that the highest part of the
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dodecahedron is an edge running front-back, and the front-most part is a horizontal edge - see

figure 6.1.

Figure 6.1: Orientation of Dodecahedron

(viewed from centre-front direction)
Two faces, having the front-most edge in common, point symmetrically up and down, with

no left / right component in their orientation; these faces are conveniently labelled FU and

FD. Their (outward) unit surface normal vectors are

(6.1)
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The cosine of the angle between vectors normal to two adjacent faces of a regular polyhedron
is equal to the cosine of the dihedral angel at each edge of that polyhedron; hence, the scalar
product of U, and U, isequal to the cosine of the dihedral angle at the edges of a regular
dodecahedron.

Now, for any regular polyhedron,

J, =2§n_1§e;os(p/ev)9 6.3)

sinlp/e; )5

where J , isthe dihedral angle, e, is the number of edges around each face, and e, isthe
number of edges which meet at each vertex [66]. Rearranging gives

: 5Q_d9: cosp/e,)

sin

6.4
e2g 9n /ef (64

For adodecahedron, e, =3 and e; =5; hence

sinaé—dgz cos(p /3)
£€2 g snp/5)

(6.5)

Now since, for any angle | ,

cos(j ) = +4/1- sin®(j ) (6.6)
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so we may use the trigonometric “double angle” identity for sinesto obtain

sin(Jd)ZZSin? Z sg g
:zgng@_dé gé_dQ
2 g €29
2
(6.7)
_ 2& 3-J§ '
J5-45 -\/5
_2J2y3-
5- J_
=\/3-J§(J§+1)
V10

where the positive square root is taken in the substitution from equation (6.6) because the
dihedral angle must by definition be less than 180°. We can now find the cosine of the
dihedral angle:

cos(J,) =4/1- sin’J,)

_ 3- 51+ )2

g w0

8- V5)l6-+2/5)
10

1-

QQ_

(6.8)

al= Bln

where the positive square root is taken since (by inspection) the angle in question is less than
90°.
We can now determine the values of the elements of U, and U.,. Since they are unit

VECtors,
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and

and
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e |1 u
é\/EVS NCY
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Upp =8 0 a (6.14)
& |1
: 165!
e 10 u

The opposite (backward-facing) faces, labelled BU and BD, necessarily have unit surface

normal vectors which are obtained by multiplying U, and U, by - 1:

é |1 u
o
- é U
Ug, =@ 0 U (6.15)
€ o 5
& V10 u
and
é |1 u
& \/%\/5+\/§u
- é U
Ugp =@ 0 U (6.16)
Vil
& V10 u

The remaining eight faces can similarly be grouped into pairs for which the surface normal
vectors are equal in one component, equal and opposite in another, and zero in the third;
furthermore, the vectors associated with each pair differ from those associated with the
opposite pair only by a factor of - 1. Therefore, calculations equivalent to those above may
be used to obtain these vectors.

It is convenient to define

c*:\/I\/Sh/_:i 50 +104/5 (6.17a)
10 10
c :\/%\/5- J5 =1—1O 50- 10v/5 (6.17b)

The unit surface normal vectors for the faces of the dodecahedron may then be expressed in
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terms of these two values as

Gy =[c” 0 ¢ (6.182)
p=lc® 0 -c | (6.18b)
Ug, =|]-c* O c']T (6.18¢)
(g =[-c* 0 -c (6.18d)
G,=c ¢ o (6.18¢)
Gp=[-c ¢ 0 (6.18f)
e =l -c* 0 (6.180)
ig=[c -c* 0 (6.18h)
G, =0 ¢ c*f (6.18i)
=0 -c ¢ (6.18))
Gy =0 ¢ -cf| (6.18K)
(pe=0 -c -c*] (6.181)
Theconstants ¢ * and ¢~ satisfy the following relationships:
1.5
c)Y==+-— 6.19a
(c”) 510 (6.199)
1 5
c)y==-22 6.190
(c7) 5" 10 ( )
(c)*+(c’)*=1 (6.19¢)
1
c*)?-(c ) =— 6.19d
(c7)-(c) NG ( )
1
c'co=— 6.19¢
NG (6.1%)
¢’ _ J5+1 (6.190
c 2
C+ :E (6199)
c 2
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6.2: Derivation of the A-B Matrix

The method described in Chapter 5 for the derivation of the A-B matrix coefficients in the
case of the first-order soundfield microphone is not applicable when the second-order
soundfield microphone is considered. While we can write equations similar to equations
(5.25) and (5.26) for any of the zeroth-order or first-order signals, this leaves usin each case
with twelve unknown matrix coefficients and only four equations.

A different approach is therefore required. Let a signal H bea general linear combination

of the twelve A-format signals:

H= gFUVFU + gFDVFD + gBUVBU + gBDVBD + gLFVLF + gLBVLB

(6.20)
+gRFVRF + gRBVRB + gULVUL + gURVUR + gDLVDL + gDRVDR
or, by substituting for each of the A-format signals,
f=_C [gFU [a+ bl ﬂ]ejkfaw‘a + 05 [a+ bl o, >ﬂ]e""“”‘“>‘ﬁj
at+b . : :
+Ggy [a+bii g, >d e’ + gy a+bil g, >d el
tOelat bu xd]e’™ ™ +g -_a+ b >d[e’*" (6.21)

T 0re a+bu RF >d_ejkruRFd t Ors .a+blj| re 0 Chi

+0uL _a+bGUL el + Gur _a+bGUR o] Sl

>

ejkruDL>d + Jpn .a+bl] oR >d ejkruDin P

&,

+0p. [a+bly, o
We may obtain expressions in terms of the matrix coefficients g.,, 0., €tc., for the
coefficient of each spherical harmonic component in the Laplace series expansion of H by
evaluating the integrals given in equation (2.10). For each B-format signal, we can then
equate these expressions to the desired values of the coefficients; the resulting equations may
then be solved to find the matrix coefficients.

Note that this method is applicable to the second-order component signals, a method
employing a coincident capsule approximation could not be used, since it is the phase

differences between the capsules that allow these signals to be obtained. Furthermore, this
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approach automatically includes the dependence of the Laplace series coefficients on kr, so
that it is not necessary to determine the frequency response functions separately from the
matrix coefficients.

We consider first the zeroth-order component of H

ppi2_
:ic‘)(ﬁ cos(f )df dq
4p 0-p/2
2 pl2 N S T
=Ko O (‘){gFU [a+bl] o >d]e"‘“‘Fij +0.p [a+bﬁ o ><:i]e"‘r“”’xj
0-p/2
+ 0, [a+ by, xd]e™? + g la+ by, >d|ei=d
[ R R T 6.22
+ g |a+ bl >d]je’? + g, [a+bi, >d]el e (6.22)
+ 0 |a+ bl o xd[ei=d + g a+b0 - ﬁ_ej”aRB‘i
+ gy [a+biy, d[el i +g _a+ bl *d [e/dur?
+ Qo [a+bliy, >d[e = + g |a+ by, xd ejkrﬂDRi’}cos(f )df dq
where
1
K, " o (6.23)
For compactness, we introduce the notation
2ppl2
L (f@.f))= ¢ of @.f)cosif )df dq (6.24)
0-p/2

Multiplying out the bracketed factors in equation (6.22) and using the linearity property of

integration, we obtain
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A

Rearranging gives

Ay = aKo{ gy

+ bKO{gFU L (ﬁ -, xdelin

= Ko{agFU L (ejk )d)"' bgFU L (U FU >de]k >d)

+ag,, L (e ")+bgFD (u >de"‘ o

(6.25)

*tOpL L (ejkrfJDL

jkriigy i jkriligpd
( BU >de )+ gBDL (u BD >de )
(ﬁ . )dejkrGLin) + gLBL (ﬁ . >dejkraLB>d)
L i e 4 gL fi wdeiins]
rgo L (i, sdem7) + g L fi, sdieieond
AejkraDLx]) + gDRL (a - >aejkr0DR>& )}

+gg L

(6.26)

It isnow necessary to evaluate each of the integralsin this expression. We first observe that
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dj | ejkrs‘n(f')l:l:_i' jkr.ejkrsin(f')' dsin(f ')

df '+ kr bk df * (6.27)
— glkrsn(t) cos(f ')

so that (omitting the constant of integration)

c\ﬁjkrsin(f D) cos(f ')df ' = - éejkrsin(f D) (6.28)

Now consider the first integral in the above expression:

2ppl2

O 8™ cos(f )df dq

0-p/2

If a transformation of variables can be found that takes U, «d to sin(f '), then it will be

possible to use the result above to evaluate the integral. We know that

+

€U
~ e, u
Uy = 0 G (6.29)
&
and
écos(q) cos(f )i
d = gsin(a)cos(f ) (6.30)
g dnf) ¢
so that
(., >d =c*cos(g)cos(f ) + ¢ sin(f) (6.31)

The integrand is expressed in terms of polar coordinate angles (q,f ), with which cartesian

coordinates (X,y,z) may be associated. The transformed integrand will be expressed in
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termsof (q',f') or (X,y',Z) . Werequire then that

sin(f ) =c " cos(q)cos(f )+c sin(f) (6.32)

and, since sin(f ') is by definition the cosine of the angle made with the z' axis, this may also

be stated as

Z'=ug, (6.33)

Expressing both in the original coordinate system, we therefore have

€0

~_é

Z_él} (6.34)
eld

and

6 ¢l

~, @ 1

2=5 0 4 (6.35)
éc- U
e u

and it can be seen that the required coordinate transformation is a rotation about they axis. A

standard rotation matrix may therefore be used:

exu exu

& ,0_ é

éyl;I_MFU eyu (6.36)

ezd €zH

where

& 0 -ci

Mey =80 1 0 g (6.37)
& 0 c
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It may easily be verified that thisis consistent with the requirements expressed by equations

(6.32) and (6.33):

6 o'l & 0 - ol
€ . u_é &-U
e 0 g—eo 1 0 tgou (6_38)
gc i & 0 c e
Hence we have
cos(q')cos(f ') =c~ cos(q)cos(f )- ¢ " sin(f) (6.39a)
sin(@")cos(f ) =sin(q) cos(f ) (6.39b)
sin(f ) =c " cos(q)cos(f ) +c sin(f) (6.39¢)
The integration now becomes
pplz ppl2
O ™= cos(f )df dg = ¢ (""" cos(f ")df 'dq’ (6.40)
0-p/2 0-p/2
or
L (ejkramii): L '(ejkrs'n(f ')) (6.41)
where the notation
, 2ppl2
L (f@.f))= ¢ of@'f")cosf )df 'dg’ (6.42)
0-p/2

indicates that we are working in the transformed coordinate system.

Evaluation of the transformed integral is straightforward:
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2ppl2 2p p/2
O ("™ cos(f )df "dg’ = ¢¥lq" g cos(f ")df *
0-p/2 0 -p/2
é | up/2
— 2p < e]krsm(f ")
8 kr H—p/Z
=- %Je’“ -] (6.43)
r .
4p ejkr - e jkr
Tk 2]
_ . sin(kr)
A kr
=4p jo(kr)

Each of the eleven similar integrals evaluates to the same result. The transformation
matrices employed are listed in Appendix 4.

We now consider the second set of integrals, such as

2pp/2

O (¥ru >de =9 cog(f )df dq

0-p/2

Applying the same coordinate transformation yields

2p p/2 2p p/2 o
O N >de 9 cog(f )df dq = O ¢pin( e’ = cos(f ")df 'dq’ (6.44)
O p/2 O—p/2

Using the method of integration by parts, we obtain

Gpin(t e cos(f )df *=- ek sinf ) + q(l—rei“““ ) cos(f ")df °

J jkr sin(f ) jkr sin(f ) " Af
e sin(f') + cos(f ")df
. ¢) kr0°‘ )
_ J jkr sin(f ) @ | _jksnt)©
=-—e sn(f') + —e - 6.45
kr U krg kr g ( )

J e]krsm(f)SIn(f P 1 ejkrsm(f)
Ckr k?r?

= glkrsn(f )e 1

8k2 5" rsm(f )H
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p/2 z . \p/2
e s ik S T < IR - N A S o ||
n(f ")e! ") cog(f )df '= MM - Lgin(f )5
_p(/f' 86 &K W Qﬂ_p,z
sew@l 0 gl 10
ekre krg ekrc krg
— j - J jkr -
=12 ¥ - e)- E(e’k el (6.46)
_j2 . j2
= sin(kr) - =—cos(kr
22 (kr) < s(kr)
asin(kr)  cos(kr) o
=12 - =
: gkzr2 kg
= 2]y (kr)
and so
2ppl2 o 2p p/2 o
O ¢sin( e " cos(f )df 'dq’ = ¢plg” ¢gin(f ")e™ ™" cos(f ")df *
0-p/2 0 -pl2 (647)
= j4p jy(kr)

Again, each of the eleven similar integrals evaluates to the same result. Substituting these
results into equation (6.26) gives

A} = aKO{4p[gFU + gFD + gBU + gBD + gLF + gLB
+gRF + gRB + gUL + gUR + gDL + gDR]JO(kr)}
+bKo{j4p[Gry + Gro + Oau + Gep + O + Ous

TO0rr T O0rs T 00 Y Ort O T gDR]jl(kr)} (6.48)
G

T a+b

(960 + G + Oau + Geo + Oir + Ois + O + Ore

+Gu. *+ Gur + Gou + Gor)” [@o(kr) + jbi; (kr)]

Substantially the same method may be used to calculate the coefficients of the spherical

harmonics of higher order, although there are some additional complications. To evaluate
integrals such as
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2ppl2

O ¢ cos(q) cos(f ) cosif )df dq

0-p/2

it is necessary to express cos(q)cos(f ) (and in other cases sin(@)cos(f ) or sin(f)) in terms

of the transformed coordinate system. This may be accomplished by observing that if

écos(g’)cosf )i écos(g) cos(f )
gsin(@") cos(f ) = Mgsin(@) cos(f ) (6.49)
g snf) g €& snf) @

then

écos(g)cos(f )y 6cos(@’) cos(f ")
gsin() cos(f ) ;=M "gsin(@") cos(f ) (6.50)
g snf) ¢ g snf) 4§

When computing the second-order coefficients, integrals such as

2ppl2

O 8" cos(2q) cos(f ) cosif )df dg

0-p/2

arise. Factors such as cos(2q)cos?(f) can be expanded, by application of trigonometric
identities, into a polynomia in terms of cos(q)cos(f ), sin()cos(f ) and sin(f ), which can
then be transformed using inverse matrices as described above. Since a spherical harmonic is
(by definition) a polynomial in the three direction cosines, such an expansion will always be
possible for any spherical harmonic of any order.

The integrals which remain to be evaluated after these transformations have been performed
become more complicated as the spherical harmonic order is increased. However, it so
happens that each such integral can be evaluated by applying the method of integration by
parts and using a previously found result. A list of the integrals which arise is given in
Appendix 4.

The following expressions are obtained for the coefficients of the zeroth-order, first-order
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and second-order components of H :

A =218 *+Or0 * Gou O * Our + Ouo * O + O + Gt *+ O (6512
+ Qo+ Gor)” [ao(kr) + jbi, (kr)]
G (. _
Ai :m(c [gUL + gUR - gDL - gDR]+ C [gFU + gBU - gFD - gBD]) (6.51b)
“ b (kr) + j3aj, (kr) - 2bj, (kr)]
Ai,l =m(c+[gFu +gFD - Opy - gBD]+C_ [gLF +gRF - O - gRB]) (6.510)
" b (kr) + j3aj, (kr) - 2bj, (kr)]
G (. _
Bl,l = a+b(c [gLF + O~ Or - gRB]+ C [gUL + OpL - Our - gDR]) (6.51d)
" b (kr) + j3aj, (kr) - 2bj, (kr)]
G 1
Az = a+b4_\/§([\/§_ 3][gFU 0 0 * gBD]' [gLF Ok t0p * gRB]
+[V5+3[gu + Gur *+ Gor *+ Gogl) (6.51€)
" [2bi, (kr) - 5aj, (kr) - j30j,(kr)]
G 1
As = o p 9% - Oro - Gou * Geol [1200,0k0)- Ba, ()~ i ()] (6510
G 1 . 1
Ao =5 (€10 *+ 000 + 9o + 9eo]- 01 + 010 * 0 + 9]
- (C ) )Z[QUL + gUR + gDL + gDR]) (6-519)

“[2bi, (kr) - 5aj,(kr) - j3bi,(kr)]

G 1
B = oo p Je 19~ G~ Gou * Ooel” [12002040) - Bl (k) - j30js (k)] (851

G :
B = 153 f[gw 05 - O+ Gra] [ 200, (K1) - 5j, (k) - j3j;(kr)]  (6.51)

Since these nine equations are not sufficient to determine the twelve matrix coefficients, we
next consider the coefficients of the third-order spherical harmonics. Proceeding as before,

we obtain:
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G 1 ]
A3 = a+bZ([1+\/§]C [gFU +gBU - O - gBD]
) [\/g ) 1]C +[gUL +0Our - Yo - gDR]) (6.52a)
" (301, (k) + j7aj, (kr) - 4bj, (kr)]
As.,l_ +b8([\/_ 3] [gFU 0 - Ogu - gBD]
+2¢° [gLF + Orr -~ Y15 - gRB]) (6-52b)
" [30], (kr) + j7aj; (kr) - 4bj (k)]
G 1 ]
As.,z = a+b%([l+\/§](: [gFD *0gp - Ory - gBU]
) [‘/g' 1]C+[gDL *tOpr - Qu - gUR]) (6.52c)
" (301, (kr) + j7aj, (kr) - 4bj, (kr)]
A3,3 = a+b240([1 \/—]C [gBU +gBD Ory - gFD]
+2[2+\/§]C_ [gLF tOrr - O - gRB]) (6.52d)
" [30], (kr) + j7aj; (kr) - 4bj (k)]
G 1
Bs,l = a+b8(2C [gLF 056" Ore - gRB]
+ [3+ \/g]c _ [gUR *Opr - Qu - gDL]) (6.52¢)
" (300, (kr) + j7aj, (kr) - 4bj, (kr)]
B;,=0 (6.52f)
G 5
Bis = oo (A5~ 2Je [0 + 0 - 9ir - 9o
+[\/§' 1]C_ [gUL *Oo - Gur - gDR]) (6.529)

" [30i, (kr) + j78j, (kr) - 4bj, (kr)]

In total, we now have fifteen equations (excluding that involving B, ,, which is independent

of the matrix coefficients). However, the third-order Laplace series coefficients are not all

linearly independent; it may be observed that
A =-2/5A,

As.,l = 6(5' 2\/§)A3,3
B,, =-6(5+2V5)8B, ,
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Hence, we have obtained exactly twelve linearly independent equations in the twelve A-B
matrix coefficients; these can therefore now be determined. For each B-format signal, we set
the coefficient of the appropriate spherical harmonic to a suitable value, and all other
coefficients to zero; we then solve the resulting set of equations for the twelve matrix
coefficients. Note that, while this “suitable value” is 1 for the zeroth-order and first-order
component signals, it takes different values for the second-order signals because of the
scaling factors which appear in the definitions of the second-order spherical harmonics. For
example, the coefficient B,, is associated with the spherical harmonic 3sin(2q)cos*(f );
hence, to obtain the desired polar response, B, , must be set equal to 3.

It is desired that the A-B matrix should be frequency-independent, asiit is for the first-order
soundfield microphone; hence, the frequency response functions are omitted at this stage. For
convenience we aso disregard the G/(a+b) factor. The A-B matrix derived therefore
depends only on the geometry of the array; the polar responses of the individual capsules will
be taken into account when designing the non-coincidence compensation filters.

The matrix coefficients obtained are shown in table 6.1.

Note that each of the signas S T and V is obtained from a rectangular arrangement of

capsules similar to that described in section 3.6.
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W] x | v | z R s [ T U v
O | 1| 1. 1. 5 V5 V5

=1 2 o | ¢ | 2b5-3 210 | 2hevs)| o
0| 1| 1. 15 Js /5

=1 2 o |-5¢ | 253 20| 2E)| o
G| 1| 1.- 1.1 +5 J5 V5

=12 o | ¢ | 2b5-3 210 | 2e)| o
eo| 1| 1.- 1.-| 5 V5 V5

—|-=c -=¢c N2 5. N2 N9

=12 0 | -3¢ | kB3 2| 0 | 2he)| o
or | 1) 1o 3| o | .5 | o | o | B | 5

2| 4 | a4 24 2 | s
gLB i -EC_ EC+ 0 _3 0 0 _\/E _\/E

2| 4 | a 24 2 | e
Ore i EC' -1C+ 0 -i 0 0 _@ _ﬁ

12 4 4 24 12 6
gl L] 3¢ | 2| o | -5 | o | o | %5 | 45

2| 4 | a 24 2 | s
Qu [ 1 1.1 1.+] 45 V5 | V5

2| O | 28| 47| gtEe3| o o —4(1 ¥s)| o
G| 1 R I IR V5| 5

2 0 |73 3o e o sy —4(1 ¥s)| o
Oo [ 1 1.1 1.+] 5 V5 | 45

| 0 | 3¢ a0 | B 0 |22 220 o
Oor| 1 1] 1.+] 45 V5 | V5

— - e |-Zer | X2 Vo | M2

12 0 4 4 48 (\/§+3) 0 6 4(1 \/E) 0

Table 6.1: A-B Matrix Coefficients for Second-Order Soundfield Microphone

6.3: Presence of Unwanted Spherical Harmonic Components

Using the methods described in the previous section, it is possible to obtain expressions in
terms of the A-B matrix coefficients for higher order spherical harmonic components of H.
Since these matrix coefficients are now known for each of the B-format signals, it is possible
to establish the presence in each of the B-format signals of unwanted spherical harmonic
components.

It is convenient to define the functions
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4,0,a)=j%"[n@-n)j..@)+j@n+dnj,@)- (N+)@-Nn)j,.@)]
= "[i@- n)(nj,.@)- N+ j,.@))- @n+n j,@)]
o ¢ . d,@ . 0
=j Qn+DgK1r0 ” nh@)H

and to introduce normalised capsule polar pattern constants

(6.54)

(6.55a)

(6.55b)

None of the signals contains third-order spherical harmonic components, since these were

eliminated as part of the A-B matrix design procedure. The fourth-order Laplace series

coefficients are

1
A4 ZGE{_ (3+\/§)[gFU +gFD +gBU +gBD]' 6[gLF +gLB +gRF +gRB]

+(3' \/g)[gUL tOuwtOp * gDR]}, a,@,kr)

7' '\/g e 1
Ay =GT[QFU ~ O - Osu +gBD] h,@, kr)

1
A, =G%{' (9' \/g)[gpu +0p TO0gy T gBD]' 2\/E[gLF TOp TO0r t gRB]
+(04VB)[gu. + Gum + Gou + Gonl]” Ha(a', k)
1++/5 , ,
A;=G ;40 [' ey YO t gy - gBD] a, @, kr)
1
A4,4 = GM{' (3+\/§)[9Fu 0 T 0p * gBD]+6[gLF TO5p T0r T gRB]
B (3' \/g)[gm tOwtOp * gDR]}' H4(al’kr)
7++5 ,
B,, =G -:1(?)/— [' Ou. ¥ 9ur T 901 - gDR] u, @, kr)
5 ,
B4,2 _G%[QLF - O Owre +gRB] H4(a'1kr)
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(6.560)



On the Theory of the Second-Order Soundfield Microphone Philip Cotterell
5-1 .
B4,3 = G\/Z—T[QUL “ Ok~ 9o T gDR] H4(al’kr) (6-56h)
1 , \ .
B4,4 =G%[9LF "0~ O * gRB] H4(a ,kl') (6'56|)
Thefifth-order coefficients are given by
J5 _
As :Gm{("ﬁ' 11\/3)(: [gFU - Opp t0ey - gBD] (6.57a)
+(35+11\/§)C+[' Our - Gur T 0oL gDR]}' (@', kr)
V5 .
A5,1 :G4_OO{(35- 3\/3)(: [' Oru - Oep T 0gu t gBD] (6.57b)
+1O‘/§C_ [gLF O T Ok - gRB]}' Hs(al’kr)
1
A5,2 ZG%{(\@' 1)C_ [' Oru YO - Ogu t gBD] (6.570)
+(\/§+1)C+[' Ou. - Gur 9o t gDR]}, Hs(al!kr)
1 .
A5,3 =Gﬁ{(l3- \/g)c [gFU 0 - Opu - gBD] (6.57d)
+2\/§(2+\/§)C_ [gLF - O t0ge - gRB]}, Hs(al!kr)
1 )
A5,4 :G@{(3+\/§)c [gFU - O +gBU - gBD] (6.578)
+(3' \/g)CJr[gUL 0wk~ 9oL - gDR]}' Hs(a.'kr)
1 .
A5,5 =Gm{(3+\/§)c [gFU 0 - Ogu - gBD] (6.57f)
+2(2\/§' 1)0_ [gLF - O Y 0ge - gRB]}, Hs(alikr)
J5 .
BS,l = Gm{lo‘/gc [gLF 06~ Ore - gRB] (6.570)
+(35+3‘/§)C_ [gUL - Our 9oL - gDR]}, Hs(al!kr)
Bs,=0 (6.57h)
Byy = G——{2V5(V5- 2)c [+ gur - 91s + Grr + O]
5,3 1920 LF LB RF RB (6.57i)
+(13+\/§)C_ [' Ou. YOk~ 9oL * gDR]}' Hs(a.'kr)
B;, =0 (6.57))
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1 .
Bs s :Gm{2(2£+1)c [' OiF - 9 T Ore * gRB]

(6.57K)
+(3' ‘/g)c [gUL - Ouwr t9p. - gDR]}, Hs(a.'kr)

The sixth-order Laplace series coefficients are given by

1
A :GR{' (63‘/3' 20)[9Fu O T0g * gBD]
+125[gLF 0 T0r t gRB] (6.589)
+(20+ 63\/3)[9UL tO,ktOp t gDR]}, hg(a',kr)

15++/5

Aﬁ,l =G 400 [gFU - Orpo - Osu +gBD], He(alykr) (6-58b)
V5
A6,2 :Gﬁ{(:m' \/g)[glzu t0mp t0g t gBD]
+5[gLF TO0p TOr t gRB] (6.58c)
+(14+ V5)[g. + Gun * Gou + Gonl]” Hs (@, k)
7/5- 15 . :
A6,3 =G 9600 [' Oru Y90 T 0su - gBD] He(a'kr) (6-58d)
1
Aﬁy“r =Gm{_ (20+3\/E)[gFU TOmp T 0 t gBD]
- 15[gLF T05 TOr t gRB] (6.58¢)
B (20' 3‘/§)[9UL tOwrtOp t gDR]}, ag(a',kr)
5+3J5 , ,
Aﬁ,s =G 96000 [' 9ry T 90 t Gy - gBD] He(a'kr) (6.58f)
J5
Aﬁxe = 576000{- (\/g + 2)[gFU + gFD + gBU + gBD]
- 13[9,_,: O t0p * gRB] (6.589)
+(\/§ B 2)[gUL tOuwrt0p t gDR]}' Hes(a.'kr)
15- /5 . :
Bﬁ,l = W[' Ju. T 9ur t 901 - gDR] He(a ,kl’) (6-58h)
J5 , , .
Bs > :_[' OFr Y9 T Ore - gRB] Ag(a',kr) (6.58i)
160
15+ 7+/5 ] . .
6,3 ZW[QUL “Owr- 9o * gDR] Ug(a',kr) (6.58))
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B, = 2400[ O + 06 *+ O - Ore)” H(,Kr) (6.58K)
3/5-5
Bys = 96000[ Gue + Our + O - Oor)” Ho(@Kr) (6.581)
J5 , .
Bso = 288000[gLF Ok O * gRB] Hg(a',kr) (6.58m)

From these general expressions, the Laplace series coefficients for each of the B-format
signals are obtained by substituting in the known values for the A-B matrix coefficients. It so
happens that the majority of the coefficients in the Laplace series for each signal are zero;

only the non-zero coefficients are listed here.

For W:
Ad ~}—%GH (@, kr) (6.59a)
Ao ?—%Gﬂ (al k) (6.59)
A fW} = - MGH o(a',kr) (6.590)
A66{ }= 115ZOOGH6(a'.kr) (6.59d)
For X
A{X}=- %GHS @,kr) (6.60a)
As,g{f}=153;g(‘)g GH,(a',kr) (6.60b)
A;,s{f} = i\g/gz(;olGHs(a'.kr) (6.60c)
For \7:
B,,{V} = %Gﬂs(a, kr) (6.614)
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21 15- 35 ,
B,.{V}=- 2 GH (@ k) (6.61b)
1 _ 3J/5+1 ,

S,S{Y}—- 19200 GH(a', kr) (6.61¢)
For Z

INFAE %Gﬁs(aﬂkf) (6.623)

A{Z}= %Gﬂ (@, kr) (6.620)

%,4{2}—9—(150% (@, kr) (6.620)
For R

AfR}=- %Gm(a',kr) (6.639)

A{R}= ;ﬁ GH, (2 kr) (6.630)

A4,4{F~2} =- ﬁGj@(a‘, kr) (6.63¢)

INEE %GH o(a kr) (6.63d)

A{R}= %Gﬂ o(a kr) (6.630)

%,4{~}—@Gﬂ (@, kr) (6.63f)

&,ﬂ—%eﬂ (a kr) (6.630)
For S

IMEE ”650 >Gi, (@ k) (6,64

A{S)=- 5;6\(/)3 GH, (a',kr) (6.64b)

As,l{g} = 3{2; 1GH6 (a',kr) (6.64¢)
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'%,3{§} =- 7é83£f GH (e’ kr) (6.64d)
Afdl=- 2 B o, o) (6640
For T :
B4,1{~} =- 7\/§0+56H4(a', kr) (6.65a)
1 _5-45 ,
B,.{T}= =G (@ k) (6.65b)
B,.{T}=- 3ﬁ0 Lo, (k) (6.650)
B, ,{T = 7;’8805 I, (a', kr) (6.650)
BG,S{-F} =- %Gﬂ s(a',kr) (6.65€)
For U :
INGE 72—‘fen4 (@, kr) (6.663)
A,{0}=- %Gm (@, kr) (6.66b)
A{0}=- 278—‘/;%4 (@ kr) (6.660)
A0} =- 72—fene (@, kr) (6.660)
Aﬁ,z{ ~} = gloGH s(a',kr) (6.66€)
As,4{ ~} =- %Gﬂs (a',kr) (6.66f)
As,e{ ~} =~ _cu s(a',kr) (6.660)
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For V :
B,,{V}= %3 G, (a' kr) (6672)
_ 5
B, .{ }_% GI,(a k) (6.67b)
B,,{V]=- 4i8 GI,(a kr) (6.670)
RN |
B, .{V]=- —0 GH, (&, kr) (6.67d)
B, of } <515 CHa(@ k) (6.67¢)

From these results it can be seen that W is corrupted by unwanted spherical harmonics of
order six; the first-order component signals are corrupted by spurious fifth-order spherical
harmonics; and the second-order signals contain both fourth-order and sixth-order unwanted
spherical harmonic components.

In Chapter 5, it was noted that the B-format signals obtained from the first-order soundfield
microphone are contaminated by spurious second-order or third-order spherical harmonics.
The second-order soundfield microphone therefore represents a considerable improvement in
this respect. Since the higher order spherical harmonics have coefficients which depend on
higher order spherical Bessel functions, which in turn remain small up until greater values of
kr, so it may be expected that the maximum frequency to which effective coincidence is
maintained will exceed that given by equation (5.9). This advantage will, however, probably
be opposed to some extent by the fact that the array radius is likely to larger for a second-

order soundfield microphone.

6.4: Non-Coincidence Compensation Filtering

The author has not considered the design of non-coincidence compensation filters in detail;
the design of practical approximations to the theoretically idea characteristics is a matter of
practical implementation rather than fundamental theory, and therefore outside the scope of
thisthesis. Nevertheless, the following observations can be made.

By substituting the coefficients given in table 6.1 into equation (6.51), we obtain the
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following results:

AW} = Gla o (kr) + o'}, (k)] (6.683)
A{Z}= 6l jo (k) + 32y (k) - 20, (k)] 668
=G/, (a',kr) '
A{X} =Gl jo (kr) + j3a (k) - 20 ], (k)] (6680
=G, (a',kr) '
B,{V} = Glo jo (kr) + j3a'j, (kr) - 20"}, (kr)] 6680
=GH,(a',kr) '
A{R} = 6lj20'], (k) - 52, (k) - 130, (k)] 6680
=-GH,(a',kr) '
A {8} =622, () - 5t () - 307 ()]
, (6.68f)
:-G§H2(a',kr)
A0} = G220, k) - 5, (k) - 3]y (ko)
(6.689)
=6l (a )
3
B.{T}= 621125 () - 54t k) - 3 (k)
, (6.68h)
=- G§H2(a',kr)
B,.{V} =6 1[j20 j, (kr) - 5@t j, (k) - 130 jo(kr)]
3 (6.68i)
- -G%Hz(a',kr)

The factors of £ and % in the expressions for A,,, A,,, B,,, and B,, are due to the
factors of 2 and 3 which appear in the definitions of the corresponding spherical harmonics
(see page 128); they therefore do not imply the need for compensatory scaling of the signals.

The impulse responses corresponding to these frequency response functions may be found

by taking the inverse Fourier transforms. Let

t=- (6.69)
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then
kr =tw (6.70)

and employing the inverse Fourier transforms of the spherical Bessel functions developed in

Chapter 2, we obtain

Dy(t) = F{G[a jotw) + jb' j,tw)]}

6.71
2?2( b't+at)r, (t) (6719
D.(t) = F G, (a' tw)}
6.71b
:Zﬁ(btz- att) r, (t) (6719)
D,(t) = F Y- G, (a',tw)}
6.71
:4{2( B't°+3at 12 +b't 2 - at °), (1) 6719
where
il -t <t<t
()= {0 otherwise (6.72)

It may be noted that the frequency responses of the desired spherical harmonic components
of the zeroth-order and first-order signals have the same form as in the case of the first-order
soundfield microphone. Filters that have proved to give acceptable results with the first-order
soundfield microphone might well therefore be equally suitable for use with the second-order
microphone.

In the case of the second-order signals, the required filtering is fundamentally different in
one respect. From equation (2.14), it can be seen that the frequency response function for the
second-order spherical harmonic components becomes zero for kr =0. This is because we
are approximating second-order directional derivatives by taking the difference between the
outputs of first-order microphone capsules. An integration with respect to time is therefore

necessary, not to compensate for the spacing of the capsules, but as a fundamental part of the
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method being utilised to obtain the signals. The filtering will therefore serve a dua purpose
so far as these signals are concerned, since at higher frequencies compensation for the effects
of the capsule spacing will still be required.

It must be noted that suitable filters cannot be designed on the basis of theory alone. During
the development of the first-order soundfield microphone, it was found that although filters
developed from theoretica analysis gave a substantial improvement over arrays without
filtering, to obtain optimum performance it was necessary to take into account experimental
information [7]. Certainly one expects that this will be the case with the second-order
soundfield microphone as well, since there will inevitably be departures from ideal behaviour

which are not represented in the theoretical treatment.

6.5: Additional B-Format Sgnal Processing

6.5.1: Rotation & Elevation

The rotation and elevation controls for the second-order soundfield microphone must clearly
have an identical effect on the zeroth-order and first-order signals as in the case of the first-
order microphone.

By trigonometric manipulation it may be established that the rotation control modifies the

second-order component signals as follows:

R, =R (6.733)
S, =cos@)S +sn(@)T, (6.73b)
T, =-sn(q)S, +cos()T, (6.73c)
U, =cos(29)U, +sin(2q)V, (6.73d)
V, =-sin(2g)U, +cos(q)V, (6.73e)

The effect of the elevation control on the second-order signals may similarly be established to
be:

R, =4(L+3cos(2f ))R, - 35in(2f)S, +£(1- cos(2f ))u, (6.74a)
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S, =sin(Z )R, +cos(X )S, - 3sin(Zf )U, (6.74b)
T, =cos(f )T, - sin(f )V, (6.74¢)
U, =3(1- cos(2))R +3sin(2)S, +3(3+ cos(2h))U, (6.74d)
V, =sin(f )T, + cos(f )V, (6.74e)

6.5.2: Sde-Fire/ End-Fire Switching & Inversion

The compensatory signal processing required to facilitate end-fire operation is:

W, =W, (6.753)
X,=2, (6.75b)
Y, =Y, (6.75¢)
Z,=-X%, (6.75d)
R,=-1R +3U, (6.75¢€)
s =-5 (6.75f)
T, =V, (6.750)
U, =R +1iU, (6.75h)
V, =T, (6.751)

Asinthe case of the first-order soundfield microphone, inverted operation requires only a

polarity reversal of some of the B-format signals:

Y, =-Y, (6.764)
Z,=-2, (6.76b)
S, =-S (6.76¢)
T,=-T, (6.76d)
V, =-V, (6.76€)

6.5.3: Dominance

The author has proved that it is not possible to extend the dominance transformation to work
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with the second-order B-format signal set.

Suppose that the transformation can be extended to accommodate the second-order
component signals. The transformed signals must be linear combinations of the existing
signals; hence, there must exist coefficients W', X', Y', U' and V', presumably functions

of | , such that
A, cos(y,) =W'A + X'A cos(d,) +Y'A sin(@,) +U"' A cos(,) +V' A sin(2,) (6.77)

Note that it is sufficient to consider only the pantophonic case, since the periphonic case
essentially reduces to this for f =0. Complications due to the non-zero response of R for
directions in the horizontal plane are avoided by using a notional signal which encodes only
amplitude; whether this notional signal is in actuality proportional to W or to a combination
of Wand R is unimportant. The ]/ V2 scaling of Wis also neglected for convenience.

We know that

A = 2]l (+ cosa) +1(t- cosay)]A (6789
| % - 1+(I 2 +1)cos(q1)

cos(g,) = Tiis (l — 1)Cos(ql) (6.78b)
. _ 2l sin(@,)
sn(@,) = |2 +1+(| . 1)cos(q1) (6.78¢c)
and also that A, cos(2q,) can be found by using the identity
cos(2q) = cos’(q) - sin*(q) (6.79)

By taking various values of q, it is possible to generate a set of simultaneous equations which

can then be solved for W', X', etc.

i) Let g, =0. Then

A=A (6.80a)
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q, =0 (6.80b)

and

A, ZWA +XA+UA
|A =W'A +X'A +U'A (6.81)
| =W+X'+U"

ii) Let g, =180°. Then

A =1A (6.822)
0, =180° (6.82b)

and

A, WA - XA +U'A
| 2A =W'A - X'A +U'A (6.83)
|1 =W X+

iii) Let g, =90°. Then

A, =%[| +17A (6.84a)
7.1
cos(,) = 711 (6.84b)
. 2
sin(@,) = 711 (6.84¢)
and
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1u

P OO, )__[I ! 1]Aigel 2114
[I 1]I4 6l

-ﬁ”'—
2l |2 +1

1]

AiI“-6I2+1=V\/,A1+Y,Ai_U,Ai

20 1%2+1

4_ 2
ilzs—lﬂzw-+y'-u-
2| | “+1

iv) Let g, =-90°. Then

:%h RN
cos) =5

) -2l
sin(@,) = m

and

A, cos(2, =A II2—1

AiI“-6I2+1:W,A1_Y,AI_U,Al

20 12+1

4 _ 2
i|26—|+1=W'-Y'-U'
2| | +1

v) Let g, =45°. Then
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e
i[l (V2 +1)+12(12- 1)]A (6.90a)

(6.90b)

= (6.90¢)

and

Azcos(Zq):—[\/_l w1 )+ 1A

FCNEN L
e (TR R (RTD - NF (RR P
=@[ﬁ(| IR (6.91)
C2 P2l -t ) 41 1P -4
W20 1)+ - 1)

_2A 2 - e2d2( 21 2)+ (et - 4
4 2( +1t)+(- 1)
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V2A 2 -1t 2202 12)+ (1l 11 -4

4 20 +11)+ (- 1) WA1+\/_ \/_A&JFVA&
V22 -1 tf a2t ) e e X Y
4 2(1 #1024+ - 1) W J2 2 v (692
120 1P eV ) (Al o
2 2 11+ -1 SV

Thus five simultaneous equations have been obtained, sufficient to determine the five

coefficients. By appropriate manipulations we obtain

:%(I 1Y) (6.933)
Y'=0 (6.93b)
w=l 2*_'1'2 (6.930)

ol +1)
2
-2 (6.93d)
and
V= o . 2(' - | _1) . (6.94)

W2+1)i2+2/2+(2- 1) 2

However, if instead equation (6.92) is obtained by setting g, = - 45°, then we have instead

120 12 ) (Al s
; T2l o1 1) =J2W+X"- Y- V2V (6.95)

The sign reversal on Y' is of no consequence, since we still obtain a value of zero for Y' as

before. However, the sign reversal on V' means that the solution is now

SN (5 b
(Vi) vz (24 -

(6.96)
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We have thus obtained a contradiction, since equations (6.94) and (6.96) cannot
simultaneously be satisfied. Hence, it is not possible to find coefficients W', X', etc.,,

independent of g, such that equation (6.77) is satisfied, and so it is not possible to extend the

dominance transformation to the second-order case.
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